3.2.63 \(\int \coth ^3(c+d x) (a+b \tanh ^2(c+d x))^3 \, dx\) [163]

3.2.63.1 Optimal result
3.2.63.2 Mathematica [A] (verified)
3.2.63.3 Rubi [A] (warning: unable to verify)
3.2.63.4 Maple [A] (verified)
3.2.63.5 Fricas [B] (verification not implemented)
3.2.63.6 Sympy [F]
3.2.63.7 Maxima [B] (verification not implemented)
3.2.63.8 Giac [B] (verification not implemented)
3.2.63.9 Mupad [B] (verification not implemented)

3.2.63.1 Optimal result

Integrand size = 23, antiderivative size = 72 \[ \int \coth ^3(c+d x) \left (a+b \tanh ^2(c+d x)\right )^3 \, dx=-\frac {a^3 \coth ^2(c+d x)}{2 d}+\frac {(a+b)^3 \log (\cosh (c+d x))}{d}+\frac {a^2 (a+3 b) \log (\tanh (c+d x))}{d}-\frac {b^3 \tanh ^2(c+d x)}{2 d} \]

output
-1/2*a^3*coth(d*x+c)^2/d+(a+b)^3*ln(cosh(d*x+c))/d+a^2*(a+3*b)*ln(tanh(d*x 
+c))/d-1/2*b^3*tanh(d*x+c)^2/d
 
3.2.63.2 Mathematica [A] (verified)

Time = 0.49 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.88 \[ \int \coth ^3(c+d x) \left (a+b \tanh ^2(c+d x)\right )^3 \, dx=-\frac {a^3 \coth ^2(c+d x)-2 (a+b)^3 \log (\cosh (c+d x))-2 a^2 (a+3 b) \log (\tanh (c+d x))+b^3 \tanh ^2(c+d x)}{2 d} \]

input
Integrate[Coth[c + d*x]^3*(a + b*Tanh[c + d*x]^2)^3,x]
 
output
-1/2*(a^3*Coth[c + d*x]^2 - 2*(a + b)^3*Log[Cosh[c + d*x]] - 2*a^2*(a + 3* 
b)*Log[Tanh[c + d*x]] + b^3*Tanh[c + d*x]^2)/d
 
3.2.63.3 Rubi [A] (warning: unable to verify)

Time = 0.29 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.97, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3042, 26, 4153, 26, 354, 99, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \coth ^3(c+d x) \left (a+b \tanh ^2(c+d x)\right )^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {i \left (a-b \tan (i c+i d x)^2\right )^3}{\tan (i c+i d x)^3}dx\)

\(\Big \downarrow \) 26

\(\displaystyle -i \int \frac {\left (a-b \tan (i c+i d x)^2\right )^3}{\tan (i c+i d x)^3}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle -\frac {i \int \frac {i \coth ^3(c+d x) \left (b \tanh ^2(c+d x)+a\right )^3}{1-\tanh ^2(c+d x)}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {\int \frac {\coth ^3(c+d x) \left (b \tanh ^2(c+d x)+a\right )^3}{1-\tanh ^2(c+d x)}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 354

\(\displaystyle \frac {\int \frac {\coth ^2(c+d x) \left (b \tanh ^2(c+d x)+a\right )^3}{1-\tanh ^2(c+d x)}d\tanh ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 99

\(\displaystyle \frac {\int \left (\coth ^2(c+d x) a^3+(a+3 b) \coth (c+d x) a^2-b^3-\frac {(a+b)^3}{\tanh ^2(c+d x)-1}\right )d\tanh ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {a^3 (-\coth (c+d x))+a^2 (a+3 b) \log \left (\tanh ^2(c+d x)\right )-(a+b)^3 \log \left (1-\tanh ^2(c+d x)\right )-b^3 \tanh ^2(c+d x)}{2 d}\)

input
Int[Coth[c + d*x]^3*(a + b*Tanh[c + d*x]^2)^3,x]
 
output
(-(a^3*Coth[c + d*x]) + a^2*(a + 3*b)*Log[Tanh[c + d*x]^2] - (a + b)^3*Log 
[1 - Tanh[c + d*x]^2] - b^3*Tanh[c + d*x]^2)/(2*d)
 

3.2.63.3.1 Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 99
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], 
 x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] && (IntegerQ[p] | 
| (GtQ[m, 0] && GeQ[n, -1]))
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.2.63.4 Maple [A] (verified)

Time = 0.25 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.07

method result size
parallelrisch \(\frac {-2 \left (a +b \right )^{3} \ln \left (1-\tanh \left (d x +c \right )\right )+2 a^{2} \left (a +3 b \right ) \ln \left (\tanh \left (d x +c \right )\right )-\coth \left (d x +c \right )^{2} a^{3}-b^{3} \tanh \left (d x +c \right )^{2}-2 d x \left (a +b \right )^{3}}{2 d}\) \(77\)
derivativedivides \(-\frac {\frac {b^{3} \tanh \left (d x +c \right )^{2}}{2}+\left (\frac {1}{2} a^{3}+\frac {3}{2} a^{2} b +\frac {3}{2} a \,b^{2}+\frac {1}{2} b^{3}\right ) \ln \left (\tanh \left (d x +c \right )+1\right )+\frac {a^{3}}{2 \tanh \left (d x +c \right )^{2}}-a^{2} \left (a +3 b \right ) \ln \left (\tanh \left (d x +c \right )\right )+\left (\frac {1}{2} a^{3}+\frac {3}{2} a^{2} b +\frac {3}{2} a \,b^{2}+\frac {1}{2} b^{3}\right ) \ln \left (\tanh \left (d x +c \right )-1\right )}{d}\) \(116\)
default \(-\frac {\frac {b^{3} \tanh \left (d x +c \right )^{2}}{2}+\left (\frac {1}{2} a^{3}+\frac {3}{2} a^{2} b +\frac {3}{2} a \,b^{2}+\frac {1}{2} b^{3}\right ) \ln \left (\tanh \left (d x +c \right )+1\right )+\frac {a^{3}}{2 \tanh \left (d x +c \right )^{2}}-a^{2} \left (a +3 b \right ) \ln \left (\tanh \left (d x +c \right )\right )+\left (\frac {1}{2} a^{3}+\frac {3}{2} a^{2} b +\frac {3}{2} a \,b^{2}+\frac {1}{2} b^{3}\right ) \ln \left (\tanh \left (d x +c \right )-1\right )}{d}\) \(116\)
risch \(-a^{3} x -3 b \,a^{2} x -3 a \,b^{2} x -b^{3} x -\frac {6 a \,b^{2} c}{d}-\frac {2 b^{3} c}{d}-\frac {2 a^{3} c}{d}-\frac {6 b c \,a^{2}}{d}-\frac {2 \,{\mathrm e}^{2 d x +2 c} \left (a^{3} {\mathrm e}^{4 d x +4 c}-{\mathrm e}^{4 d x +4 c} b^{3}+2 a^{3} {\mathrm e}^{2 d x +2 c}+2 \,{\mathrm e}^{2 d x +2 c} b^{3}+a^{3}-b^{3}\right )}{d \left ({\mathrm e}^{2 d x +2 c}+1\right )^{2} \left ({\mathrm e}^{2 d x +2 c}-1\right )^{2}}+\frac {3 \ln \left ({\mathrm e}^{2 d x +2 c}+1\right ) a \,b^{2}}{d}+\frac {b^{3} \ln \left ({\mathrm e}^{2 d x +2 c}+1\right )}{d}+\frac {a^{3} \ln \left ({\mathrm e}^{2 d x +2 c}-1\right )}{d}+\frac {3 a^{2} \ln \left ({\mathrm e}^{2 d x +2 c}-1\right ) b}{d}\) \(250\)

input
int(coth(d*x+c)^3*(a+b*tanh(d*x+c)^2)^3,x,method=_RETURNVERBOSE)
 
output
1/2*(-2*(a+b)^3*ln(1-tanh(d*x+c))+2*a^2*(a+3*b)*ln(tanh(d*x+c))-coth(d*x+c 
)^2*a^3-b^3*tanh(d*x+c)^2-2*d*x*(a+b)^3)/d
 
3.2.63.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1686 vs. \(2 (68) = 136\).

Time = 0.27 (sec) , antiderivative size = 1686, normalized size of antiderivative = 23.42 \[ \int \coth ^3(c+d x) \left (a+b \tanh ^2(c+d x)\right )^3 \, dx=\text {Too large to display} \]

input
integrate(coth(d*x+c)^3*(a+b*tanh(d*x+c)^2)^3,x, algorithm="fricas")
 
output
-((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x*cosh(d*x + c)^8 + 8*(a^3 + 3*a^2*b + 
 3*a*b^2 + b^3)*d*x*cosh(d*x + c)*sinh(d*x + c)^7 + (a^3 + 3*a^2*b + 3*a*b 
^2 + b^3)*d*x*sinh(d*x + c)^8 + 2*(a^3 - b^3)*cosh(d*x + c)^6 + 2*(14*(a^3 
 + 3*a^2*b + 3*a*b^2 + b^3)*d*x*cosh(d*x + c)^2 + a^3 - b^3)*sinh(d*x + c) 
^6 + 4*(14*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x*cosh(d*x + c)^3 + 3*(a^3 - 
b^3)*cosh(d*x + c))*sinh(d*x + c)^5 + 2*(2*a^3 + 2*b^3 - (a^3 + 3*a^2*b + 
3*a*b^2 + b^3)*d*x)*cosh(d*x + c)^4 + 2*(35*(a^3 + 3*a^2*b + 3*a*b^2 + b^3 
)*d*x*cosh(d*x + c)^4 + 2*a^3 + 2*b^3 - (a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d* 
x + 15*(a^3 - b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^4 + 8*(7*(a^3 + 3*a^2*b 
+ 3*a*b^2 + b^3)*d*x*cosh(d*x + c)^5 + 5*(a^3 - b^3)*cosh(d*x + c)^3 + (2* 
a^3 + 2*b^3 - (a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x)*cosh(d*x + c))*sinh(d*x 
 + c)^3 + (a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x + 2*(a^3 - b^3)*cosh(d*x + c 
)^2 + 2*(14*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x*cosh(d*x + c)^6 + 15*(a^3 
- b^3)*cosh(d*x + c)^4 + a^3 - b^3 + 6*(2*a^3 + 2*b^3 - (a^3 + 3*a^2*b + 3 
*a*b^2 + b^3)*d*x)*cosh(d*x + c)^2)*sinh(d*x + c)^2 - ((3*a*b^2 + b^3)*cos 
h(d*x + c)^8 + 56*(3*a*b^2 + b^3)*cosh(d*x + c)^3*sinh(d*x + c)^5 + 28*(3* 
a*b^2 + b^3)*cosh(d*x + c)^2*sinh(d*x + c)^6 + 8*(3*a*b^2 + b^3)*cosh(d*x 
+ c)*sinh(d*x + c)^7 + (3*a*b^2 + b^3)*sinh(d*x + c)^8 - 2*(3*a*b^2 + b^3) 
*cosh(d*x + c)^4 + 2*(35*(3*a*b^2 + b^3)*cosh(d*x + c)^4 - 3*a*b^2 - b^3)* 
sinh(d*x + c)^4 + 8*(7*(3*a*b^2 + b^3)*cosh(d*x + c)^5 - (3*a*b^2 + b^3...
 
3.2.63.6 Sympy [F]

\[ \int \coth ^3(c+d x) \left (a+b \tanh ^2(c+d x)\right )^3 \, dx=\int \left (a + b \tanh ^{2}{\left (c + d x \right )}\right )^{3} \coth ^{3}{\left (c + d x \right )}\, dx \]

input
integrate(coth(d*x+c)**3*(a+b*tanh(d*x+c)**2)**3,x)
 
output
Integral((a + b*tanh(c + d*x)**2)**3*coth(c + d*x)**3, x)
 
3.2.63.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 203 vs. \(2 (68) = 136\).

Time = 0.29 (sec) , antiderivative size = 203, normalized size of antiderivative = 2.82 \[ \int \coth ^3(c+d x) \left (a+b \tanh ^2(c+d x)\right )^3 \, dx=a^{3} {\left (x + \frac {c}{d} + \frac {\log \left (e^{\left (-d x - c\right )} + 1\right )}{d} + \frac {\log \left (e^{\left (-d x - c\right )} - 1\right )}{d} + \frac {2 \, e^{\left (-2 \, d x - 2 \, c\right )}}{d {\left (2 \, e^{\left (-2 \, d x - 2 \, c\right )} - e^{\left (-4 \, d x - 4 \, c\right )} - 1\right )}}\right )} + b^{3} {\left (x + \frac {c}{d} + \frac {\log \left (e^{\left (-2 \, d x - 2 \, c\right )} + 1\right )}{d} + \frac {2 \, e^{\left (-2 \, d x - 2 \, c\right )}}{d {\left (2 \, e^{\left (-2 \, d x - 2 \, c\right )} + e^{\left (-4 \, d x - 4 \, c\right )} + 1\right )}}\right )} + \frac {3 \, a b^{2} \log \left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )}\right )}{d} + \frac {3 \, a^{2} b \log \left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}{d} \]

input
integrate(coth(d*x+c)^3*(a+b*tanh(d*x+c)^2)^3,x, algorithm="maxima")
 
output
a^3*(x + c/d + log(e^(-d*x - c) + 1)/d + log(e^(-d*x - c) - 1)/d + 2*e^(-2 
*d*x - 2*c)/(d*(2*e^(-2*d*x - 2*c) - e^(-4*d*x - 4*c) - 1))) + b^3*(x + c/ 
d + log(e^(-2*d*x - 2*c) + 1)/d + 2*e^(-2*d*x - 2*c)/(d*(2*e^(-2*d*x - 2*c 
) + e^(-4*d*x - 4*c) + 1))) + 3*a*b^2*log(e^(d*x + c) + e^(-d*x - c))/d + 
3*a^2*b*log(e^(d*x + c) - e^(-d*x - c))/d
 
3.2.63.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 274 vs. \(2 (68) = 136\).

Time = 0.47 (sec) , antiderivative size = 274, normalized size of antiderivative = 3.81 \[ \int \coth ^3(c+d x) \left (a+b \tanh ^2(c+d x)\right )^3 \, dx=\frac {2 \, {\left (3 \, a b^{2} + b^{3}\right )} \log \left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )} + 2\right ) + 2 \, {\left (a^{3} + 3 \, a^{2} b\right )} \log \left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )} - 2\right ) - \frac {a^{3} {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )}^{2} + 3 \, a^{2} b {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )}^{2} + 3 \, a b^{2} {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )}^{2} + b^{3} {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )}^{2} + 8 \, a^{3} {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} - 8 \, b^{3} {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} + 12 \, a^{3} - 12 \, a^{2} b - 12 \, a b^{2} + 12 \, b^{3}}{{\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )}^{2} - 4}}{4 \, d} \]

input
integrate(coth(d*x+c)^3*(a+b*tanh(d*x+c)^2)^3,x, algorithm="giac")
 
output
1/4*(2*(3*a*b^2 + b^3)*log(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c) + 2) + 2*(a^ 
3 + 3*a^2*b)*log(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c) - 2) - (a^3*(e^(2*d*x 
+ 2*c) + e^(-2*d*x - 2*c))^2 + 3*a^2*b*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c) 
)^2 + 3*a*b^2*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c))^2 + b^3*(e^(2*d*x + 2*c 
) + e^(-2*d*x - 2*c))^2 + 8*a^3*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c)) - 8*b 
^3*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c)) + 12*a^3 - 12*a^2*b - 12*a*b^2 + 1 
2*b^3)/((e^(2*d*x + 2*c) + e^(-2*d*x - 2*c))^2 - 4))/d
 
3.2.63.9 Mupad [B] (verification not implemented)

Time = 2.91 (sec) , antiderivative size = 327, normalized size of antiderivative = 4.54 \[ \int \coth ^3(c+d x) \left (a+b \tanh ^2(c+d x)\right )^3 \, dx=\frac {\ln \left ({\mathrm {e}}^{4\,c+4\,d\,x}-1\right )\,\left (d\,a^3+3\,d\,a^2\,b+3\,d\,a\,b^2+d\,b^3\right )}{2\,d^2}-\frac {\frac {4\,\left (a^3+b^3\right )}{d}+\frac {2\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\left (a^3-b^3\right )}{d}}{{\mathrm {e}}^{4\,c+4\,d\,x}-1}-\frac {\frac {4\,\left (a^3+b^3\right )}{d}+\frac {4\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\left (a^3-b^3\right )}{d}}{{\mathrm {e}}^{8\,c+8\,d\,x}-2\,{\mathrm {e}}^{4\,c+4\,d\,x}+1}-\frac {\mathrm {atan}\left (\frac {{\mathrm {e}}^{2\,c}\,{\mathrm {e}}^{2\,d\,x}\,\left (a^3\,\sqrt {-d^2}-b^3\,\sqrt {-d^2}-3\,a\,b^2\,\sqrt {-d^2}+3\,a^2\,b\,\sqrt {-d^2}\right )}{d\,\sqrt {a^6+6\,a^5\,b+3\,a^4\,b^2-20\,a^3\,b^3+3\,a^2\,b^4+6\,a\,b^5+b^6}}\right )\,\sqrt {a^6+6\,a^5\,b+3\,a^4\,b^2-20\,a^3\,b^3+3\,a^2\,b^4+6\,a\,b^5+b^6}}{\sqrt {-d^2}}-x\,{\left (a+b\right )}^3 \]

input
int(coth(c + d*x)^3*(a + b*tanh(c + d*x)^2)^3,x)
 
output
(log(exp(4*c + 4*d*x) - 1)*(a^3*d + b^3*d + 3*a*b^2*d + 3*a^2*b*d))/(2*d^2 
) - ((4*(a^3 + b^3))/d + (2*exp(2*c + 2*d*x)*(a^3 - b^3))/d)/(exp(4*c + 4* 
d*x) - 1) - ((4*(a^3 + b^3))/d + (4*exp(2*c + 2*d*x)*(a^3 - b^3))/d)/(exp( 
8*c + 8*d*x) - 2*exp(4*c + 4*d*x) + 1) - (atan((exp(2*c)*exp(2*d*x)*(a^3*( 
-d^2)^(1/2) - b^3*(-d^2)^(1/2) - 3*a*b^2*(-d^2)^(1/2) + 3*a^2*b*(-d^2)^(1/ 
2)))/(d*(6*a*b^5 + 6*a^5*b + a^6 + b^6 + 3*a^2*b^4 - 20*a^3*b^3 + 3*a^4*b^ 
2)^(1/2)))*(6*a*b^5 + 6*a^5*b + a^6 + b^6 + 3*a^2*b^4 - 20*a^3*b^3 + 3*a^4 
*b^2)^(1/2))/(-d^2)^(1/2) - x*(a + b)^3